If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=50-5H-5H^2
We move all terms to the left:
(H)-(50-5H-5H^2)=0
We get rid of parentheses
5H^2+5H+H-50=0
We add all the numbers together, and all the variables
5H^2+6H-50=0
a = 5; b = 6; c = -50;
Δ = b2-4ac
Δ = 62-4·5·(-50)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{259}}{2*5}=\frac{-6-2\sqrt{259}}{10} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{259}}{2*5}=\frac{-6+2\sqrt{259}}{10} $
| -5z+2=7 | | -3(t)+6=0 | | 10=x/3=8 | | 27=3x+9 | | (6-2x)(x+9)=0 | | 8+5x=73 | | x/4+3=5 | | x+6=16 | | 7x=77 | | x-100=-99 | | 90+x=14 | | -3x+48=15x | | 1.2r-7+2.3r=3.5(r-2) | | 9x=45 | | x/4=1 | | (1/x)+(2/(x+10)=(1/3) | | -8/7y-3=19 | | 9x+9+3(x+2)+6= | | x/2=8 | | 6-4y=7y | | x/8=6=32 | | 3+5z+6=6z+10 | | 3x=27 | | 5x=35 | | x+3=7 | | 100-25x=25 | | x/1=8 | | 8x+3=-1x-6 | | x=0,-6,6 | | 10x-19=(3x+2)+(5x-3) | | -66=3x | | x-9=9 |